martes, 30 de noviembre de 2010

MANOMETROS Y TERMOMETROS.

INTRODUCCIÓN
Las mediciones de presión son las más importantes que se hacen en la industria; sobre todo en industrias de procesos continuos, como el procesamiento y elaboración de compuestos químicos. La cantidad de instrumentos que miden la presión puede ser mucho mayor que la que se utiliza en cualquier otro tipo de instrumento.
La presión es una fuerza que ejerce sobre un área determinada, y se mide en unidades de fuerzas por unidades de área. Esta fuerza se puede aplicar a un punto en una superficie o distribuirse sobre esta. Cada vez que se ejerce se produce una deflexión, una distorsión o un cambio de volumen o dimensión.
Las mediciones de presión pueden ser desde valores muy bajos que se consideran un vacío, hasta miles de toneladas de por unidad de área.
Los principios que se aplican a la medición de presión se utilizan también en la determinación de temperaturas, flujos y niveles de líquidos. Por lo tanto, es muy importante conocer los principios generales de operación, los tipos de instrumentos, los principios de instalación, la forma en que se deben mantener los instrumentos, para obtener el mejor funcionamiento posible, cómo se debe usar para controlar un sistema o una operación y la manera como se calibran.
Presión Absoluta y Presión Relativa:
La intensidad de la presión medida por encima del cero absoluto se denomina presión absoluta. Evidentemente es imposible una presión absoluta negativa. Por lo común los manómetros se diseñan para medir intensidades de presión por encima o por debajo de la presión atmosférica, que se emplea como base.
Las presiones medidas en este modo se denominan presiones relativas o manométricas. Las presiones manométricas negativas indican la cantidad de vacío y en condiciones normales; al nivel del mar; son posible presiones de hasta –14,7 litros por pulgadas cuadradas (pero no más bajos) (-1 atmósfera). La presión absoluta es siempre igual a la manométrica mas la atmosférica.
Pabsoluta = Pmanométrica + Patmosférica
Las presiones absolutas se miden en ocasiones en "atmósferas" estándar, así, una atmósfera = 14,7 lb/pulg² abs = presión manométrica cero; 3 atmósferas = 44,1 lb / pulg² abs = 29,4 lb / pulg² manométricas.
Presión Barométrica:
Es la presión o el peso que ejerce la atmósfera en un punto determinado. La medición puede expresarse en varias unidades de medidas: hectopascales, milibares, pulgadas o milímetros de mercurio (Hg). También se conoce como presión atmosférica .
Medición de las Presiones:
El método más usual para medir presiones es por medio del barómetro de Bourdon, que consiste en un tubo aplanado de bronce o acero curvado en arco. A medida que se aplica presión al interior del tubo, éste tiende a enderezarse, y éste movimiento se transmite a un cuadrante por intermedio de un mecanismo amplificador adecuado. Los tubos Bourdon para altas presiones se hace de acero. Puesto que la exactitud del aparato depende en gran parte del tubo, sólo deben emplearse tubos fabricados de acuerdo con las normas mas rigurosas y envejecidos cuidadosamente por el fabricante. Es costumbre utilizar los manómetros para la mitad de la presión máxima de su escala, cuando se trata de presión fluctuante, y para los dos tercios de ella, cuando la presión es constante. Si un tubo Bourdon se somete a presión superior a la de su límite y a presiones mayores que las que actuó sobre él en el proceso de envejecimiento, puede producirse una deformación permanente que haga necesaria su calibración.
Los manómetros en uso continuo, y especialmente los sometidos a fluctuaciones rápidas y frecuentes de presión, deben verificarse repetidas veces. Un procedimiento cómodo para hacerlo consiste en tener un manómetro patrón exacto que pueda conectarse en cualquier punto de la tubería en la que está unido el manómetro regular y efectuar comparaciones. A intervalos regulares debe confrontarse el manómetro patrón con el manómetro de peso directo o contrapesos. El manómetro de Bourdon es completamente satisfactorio para presiones hasta de unas 2000 atm, siempre que sea suficiente una exactitud de 2 a 3 por ciento. Estos manómetros se encuentran en el comercio con lecturas máximas en sus escalas de unos 7000 Kg / cm².
Para mediciones de la presión mas precisas, como las necesarias en trabajos de investigación o de verificación de otros manómetros, se emplea comúnmente el manómetro de émbolo con contrapesos. Este aparato es en principio muy sencillo y consiste simplemente en un cilindro con un émbolo ajustado con gran exactitud y cargado encima con pesos. La carga es equilibrada con la presión de aceite que se inyecta dentro del cilindro debajo del émbolo por medio de una bomba apropiada. La presión del aceite es a su vez equilibrada con la presión que se quiere medir, por lo general a través de un tubo en U con mercurio, usándose el nivel de mercurio para indicar el equilibrio por medio de un dispositivo eléctrico de contacto. El juego entre el émbolo y el cilindro es tan pequeño que la fuga de aceite es pequeña, incluso a presiones elevadas, y se compensa bombeando intermitentemente más aceite.
Las constante de un manómetro de émbolo pueden verificarse por medio de una presión patrón de referencia. Una conveniente es la presión del vapor del anhídrido carbónico a 0 ºC., que es 34.401 atm. Para presiones muy altas, una referencia cómoda para verificar manómetros es el punto de de congelación del mercurio que es 7400 atm., a 0 ºC.
Para la medición de presiones muy altas se ha empleado con éxito la variación de la resistencia con la presión de un alambre de manganina. Puede construirse un manómetro adecuado con una espiral de alambre provisto de un doble recubrimiento de seda y de un diámetro de 0,13 mm (0,005") y una longitud de uno s6 metros con una resistencia de unos 120 ohmios. El alambre se enrolla no inductivamente sobre un núcleo cilíndrico de unos 19 mm de diámetros. Puesto que el coeficiente de temperatura de la resistencia eléctrica de la manganina es muy pequeño, no es necesario adoptar precauciones especiales para mantener constante la temperatura. La relación de la presión y la resistencia se ha averiguado que es lineal hasta 12000 atm., y el manómetro se ha utilizado hasta 20000 atm., según extrapolación de la recta sobre la gráfica correspondiente.
Manómetros:
Un manómetro es un tubo; casi siempre doblado en forma de U, que contienen un líquido de peso específico conocido, cuya superficie se desplaza proporcionalmente a los cambios de presión.
Tipos de Manómetros:
Los manómetros son de dos tipos, entre los cuales tenemos:
a.-) Manómetros del tipo abierto; con una superficie atmosférica en un brazo y capaz de medir presiones manométricas.
b.-) Manómetros diferencial; sin superficie atmosférica y que sólo puede medir diferencias de presión.
Manómetros Abiertos:
Las etapas recomendadas en la resolución de problemas de manómetros abiertos son:
  1. Trazar un bosquejo del manómetro, aproximadamente a escala.
  2. Tamar una decisión respecto al fluido en que se expresarán las unidades de carga.
  3. Partiendo de la superficie atmosférica del manómetro como punto de carga de presión conocida, numérense , en orden los niveles de contacto de fluidos de diferentes pesos específicos.
  4. A partir de la carga de presión atmosférica, pásese de un nivel a otro, sumando o restando las cargas de presión al reducirse o aumentarse la elevación, respectivamente, considerando los pesos específicos de los fluidos.
Manómetros Diferencial:
Las etapas o pasos que se utilizan en el cálculo de diferencia de presiones son:
  1. Numero de "puntos estratégicos" indicados por los niveles de contacto de los fluidos. Se requiere cierta práctica para escoger los puntos que permitan los cálculos más sencillos.
  2. A partir de la carga de presión incógnita P/ h en uno de los puntos extremos, escríbase una suma algebraica continua de cargas , pasando de un punto a otro e igualando la suma continua a la carga incógnita P / h en el otro extremo.
  3. Resuélvase la ecuación para la diferencia de cargas, de presión y redúzcase a diferencias de presión si se desea.
Preóstatos:
  • Diafragma: muy precisos, presiones bajas.
  • Tubo Bourdon: muy precisos, presiones altas.
  • Membrana: bajo pecio.
  • Pistón: muchos ciclos y larga vida.
  • Membrana – Pistón: muchos materiales.
  • Electrónicos.
Rangos:
  • Vacío: punto de ajustes desde –1mm cda a –1 bar de vacío.
  • Muy baja presión: puntos de ajuste desde +1mm cda a + 20 mm cda.
  • Baja y alta presión: puntos de ajustes desde +10mm cda a +1250 bar.
  • Presión diferencial: puntos de ajustes desde +/-1mm cda a 420 bar.
Protecciones:
  • Intemperie, antideflagrantes, ambientes corrosivos y seguridad intrínseca.
Aplicaciones:
Hidráulica (agua/aceite), neumática, marina / offshore, aire acondicionado y refrigeración, electromedicina, control de procesos, sistema de recogida de datos, alarmas, seguridades y regulación, edificios inteligentes.
Reguladores de Presión:
Los reguladores de presión son aparatos de control de flujo diseñados para mantener una presión constante aguas a bajo de los mismos. Éste debe ser capaz de mantener la presión, sin afectarse por cambios en las condiciones operativas del proceso para el cual trabaja. La selección, operación y mantenimiento correcto de los reguladores garantiza el buen desempeño operativo del equipo al cual provee el gas.
Reguladores – Reductores:
Los reguladores reductores de presión son equipos de control de flujo diseñados para mantener una presión constante aguas debajo de ellos, independientemente de la variaciones de presión a la entrada o los cambios de requerimiento de flujos. La "carcaza" y los mecanismos internos que componen un regulador, automáticamente controlan o limitan las variaciones de presión a un valor previamente establecido.
Existen diferentes, marcas, estilos y aplicaciones para la industria del Gas Metano. Algunos tipos están contenidos por contenedores autocontrolados que operan midiendo la presión de línea y manteniéndola en el valor fijado, sin necesidad de fuentes externas de energía. Otros modelos requieren de una fuente externa para ejecutar su función de control de la presión.
Éste suplemento muestra los principios de funcionamiento de los reguladores de Gas Metano, sus dos grandes grupos: los "auto operados" y los "pilotados"; así como información importante que facilitará la selección del equipo ideal para cada aplicación.

TERMOMETROS


El termómetro es un instrumento que se usa para medir la temperatura. Su presentación más común es de vidrio, el cual contiene un tubo interior con mercurio, que se expande o dilata debidos a los cambios de temperatura. Para determinar la temperatura, el termómetro cuenta con una escala debidamente graduada que la relaciona con el volumen que ocupa el mercurio en el tubo. Las presentaciones más modernas son de tipo digital, aunque el mecanismo interno suele ser el mismo.
 

Este aparato es comúnmente empleado para tomar la temperatura, de una persona. Asimismo, el termómetro, se utiliza de igual manera, para medir la temperatura, en los animales, por parte de los veterinarios. En la actualidad, es la manera más práctica, para saber o conocer, qué temperatura corporal posee una persona.

Situación fundamental, en aquellos casos, donde la persona se encuentra enferma. Ya que las altas temperaturas, no constatadas, pueden llevar a la muerte de neuronas cerebrales, con lo que la persona, puede quedar con serios problemas cognitivos, incluso pudiendo llegar a la muerte cerebral.

Como mencionamos anteriormente, lo que se utiliza, para medir la temperatura, es el mercurio. Y esto se debe, a que el mercurio es una sustancia, que con el calor, no sólo se dilata, sino que cuando llega a la temperatura promedio, permanece estable por bastante tiempo. Y es por lo mismo, que se puede llegar a conocer con certeza, la temperatura de una persona.

Lo que se debe de tener claro, es que el mercurio es un producto altamente tóxico, por lo que un termómetro, debe ser manipulado, sólo por un adulto.

Con respecto, a los principales avances dentro de la historia del termómetro, podemos señalar los siguientes: En 1592, Galileo Galilei, construye el primer termómetro rudimentario. En 1612, Santorre Santorio, da un uso médico al termómetro. En 1714, Daniel Fahrenheit, inventa el termómetro a base de mercurio. Por último, en 1885, Calendar Van Duessen, inventa el sensor de temperatura, con la resistencia de platino.

Con respecto a las temperaturas, la escala más utilizada en el mundo, es la Celsius. Aquella que mide la temperatura en grados centígrados. Ha sido nombrada como tal, en honor a Andrés Celsius.

Con respecto a la temperatura normal, que se debe registrar en un termómetro, en un adulto humano, esta debe ser de 36,5 grados Celsius. Por sobre aquella temperatura, se podrá considerar que se posee fiebre. Ahora, sobre los 40 grados Celsius, se deben de tomar precauciones, ya que pueden llevar a desmayos, convulsiones y perdida progresiva de neuronas.

No hay comentarios:

Publicar un comentario